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Abstract 

We consider the static, spherically symmetric, perfect fluid solution for a given mass m in 
general relativity, and show that its average density is bounded. We then show by an 
example that this need not be so for non-spherical bodies. 

1. Introduction 

In  Newtonian  mechanics we obtain  a model  o f  a spherical particle by 
taking a uni form sphere and  allowing the radius ro to tend to zero, keeping 
the mass  m constant.  In  this process the density (= mass/volume)  tends to 
infinity. 

The  spherically symmetr ic  interior solution for  a perfect fluid in general 
relativity does not  admit  an analogous procedure.  Using a usual nota t ion 
we write 

ds 2 = e v(r) dt 2 - e atr) dr 2 - rE(dO E + sin 2 0 d~ 2) 

and assume that  the pressure and the energy density (= T44) are positive. 
Then  to avoid singularities one finds (Bondi, 1964) 

0 < e - a ' ~  1, 

so tha t  the p roper  volume o f  the sphere is 

r0 4~rr0_~ 3 
V =  4~r f e a/2 r E dr >1 J 3 

0 

and  the average active gravi tat ional  mass  density is 

m 3m 
t5 = V < 47rr 03 
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It can also be shown (Bondi, 1964) that 

hence 

m 
- < 6x/(2) - 8 
ro 

6(3a/(2) - 4) 3 
~ m  2 

Hence given m the average density cannot be increased indefinitely by 
diminishing r0. 

Is a corresponding result also true for non-spherical bodies in general 
relativity ? If  not, we have another reason for looking upon the spherically 
symmetric solution with reserve, and for being cautious in using it on real 
bodies. 

We put forward here a partial answer to the question, by showing that 
in at least one type of non-spherical body the density can be increased 
indefinitely. 

2. Electrically Counterpoised Dus t  ( E C D )  

We construct our solution out of  dust carrying electric charge of  such 
density that the gravitation and electric repulsion just balance everywhere, 
and we call this material electrically counterpoised dust (ECD). The 
classical equilibrium solutions for this material were shown long ago 
(Majumdar, 1947; Papapetrou, 1947) to have strict and exact general 
relativistic analogues. The relativistic solution is the only static one known 
to us which need have no spatial symmetry whatever. 

The metric is 
ds  2 = - U 2 ( d x  2 + d y  2 + dz  2) + U - 2  d t  2 (2.1) 

where U is a function of x, y, z. The Einstein-Maxwell equations 

are satisfied by 

Rik _ �89 = -8zr(T a~ + E a') 

4zrEki = _ F t .  Fk, + x~ i w,b ~. 4 ' J k  1_ Z'ab 

F~k = )lla, - Ak,~ 

Fik;k = 47rJ ~ 

T~k = pc ~ v k, j i  = cw~ 

V ~ = 34 f U, A~ = 3i 4 

3 ~ U , ~  = - 4 ~ U  3 p 

(2.2) 
(2.3) 

(2.4) 
(2.5) 

(2.6) 

(2.7) 

(2.8) 
(2.9) 

where ~ = + 1 ,  ~,/3= 1, 
semi-colon covariant differentiation. The units have been chosen so that 

cr=~p (2.10) 

2, 3, comma means partial differentiation and 
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c = 1, G = 1, so, as shown in (2.9) and (2.10), the gravitational and electric 
potentials are equal in magnitude, and so are the mass and charge densities. 

Equation (2.8) presents us with a static potential problem of classical 
type. Consider a single isolated ECD body: outside it a = p  = 0 so (2.8) 
gives 

~/3 U,~/3 = 0 (2.11) 
E 

U referring to the exterior. For the interior function U, (2.8)-(2.10) apply 
IE I 

and at the boundary B sufficient matching conditions are 

U = U U,~ = U,~ (2.12) 
I E I E 

Now let V denote the proper volume of the body, and V' that of its 
Euclidean image, viz: 

v= f f f  V3dxdyd , v'= f f f  dxdydz (2.13) 

Then we have 
3 , g '  Um~ln V < V< Um3~x (2.14) 

I I 

where Umin, Um,x are the least and greatest values of U within V and on B. 
I I 

We notice that, taking U positive (with no loss of generality) (2.8) tells us 
that provided p > 0 U cannot have a true minimum inside V so 

def  

Umin = least value of U on B = UB 
1 

(2.14) gives for the average density the limits 

m m 

~'Umax V < ~ < U 3 V '  (2.'15) 
I B 

If  we allow V' to tend to zero there are in (2.15) two possibilities of 
interest: 

(i) UB 3 V' -> finite limit so ~ is bounded. Since the limit is independent 
of U, the bound for/~ is independent of the density distribution inside 

the body. 
(ii) 3 , Umax V ~ zero so fi -~ oo. 

i 

3. Two Examples 

We give an example of each sort of behaviour. 
(i) Consider 

m 
U = 1 + - ,  r ~ r0 (3.1) 
E r 

U=l+-mro l + 4 r o - ~ - ] '  O~<r<ro (3.2) 
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where r = + (x z + y2 + z2)1/2. This solution represents a spherically 
symmetric and non-singular distribution of ECD. Straightforward 
calculation gives for (2.15) 

3m 3m 
41r(r0 + �88 3 </5 < 47r(r0 + m) 3 (3.3) 

so, given m,/5 is bounded above, no matter how small r0 may be. As 
remarked at the end of  Section 2, the upper bound for t5 is independent 
of  U. This case is similar to the spherically symmetric solution for a 

I 
perfect fluid. 

(ii) In our second example we use oblate spheroidal coordinates, taking 
for the metric 

ds 2 = -UZ[a2(sinh 2 u + sin 2 0) (du 2 + dO 2) + a 2 cosh 2 ucos 20d~ 2] 
+ U -2 dt 2 (3.4) 

m 
U =  1 + -  tan-l(cosechu), u ~> Uo > 0, 0 < tan-1(cosechu) < 
B a 

m [  a Uo 4 - u4 �9 ] 
U =  1 + a tan- (eoseeh u0) + 4Uo3 seenuo], 

the ranges of 0, ~ and t are 

~rr "B" 
- - 2 < 0 <  ~, 0 <  r  

(3.5) 

0 < u < u 0  

(3.6) 

-co < t < oo (3.7) 

and a, u0 are constants. U satisfies (2.11), and (2.12) is also satisfied. 
r 

The solution is non-singular and represents the interior and exterior 
field of an oblate spheroid of ECD, of mass m. (For a fuller discussion 
of spheroidal metrics see Bonnor & Saekfield (1968).) 

We find, using (3.4) and (3.7), that 

V' - 4rra3 sinh Uo cosh 2 U0 (3.8) 
3 

The inequality (2.15) gives 

3m coseeh Uo sech 2 Uo 

m 1 Uo 3 4rra3 { l + a [tan- (cosech uo) + -~ sech uo]} 

3m cosech Uo sech 2 Uo 
<15< 

47ra 3 t l  m ~3 + a [tan-l(c~ Uo)]t (3.9) 
t / 
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and  we see tha t  t5 can become arb i t ra r i ly  large i f  Uo is a l lowed to tend  
to zero. This means that as the spheroid tends towards a disc its average 
gravitational mass density tends to infinity. 
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